THE PROBLEM OF TURBULENT DIFFUSION
IN ACTIVE IMPURITIES

K. Z. Ushakov, V. Ya. Volk, UDC 533.15
and R. T. Pozvonkova

We examine the problem of turbulent diffusion in dynamically active gases in an air stream.
We found the relationship between the diffusion factor and the Richardson number, as
well as the relationship between the gas concentration of the gas-release wall from the de-
cisive parameters. A method is presented for the numerical solution of the resulting system’
of relationships for the diffusion of an active gas, and the results of the calculation are also
presented.

The diffusion of an active impurity (i.e., an impurity whose presence in an air stream will alter
the diffusion properties of the latter) is a phenomenon particularly widespread in nature. It assumes par-
ticular importance in mine shafts. Because of the release of methane, hydrogen, and several other gases
into the ventilation air streams of shafts, regions of degenerated turbulence may develop and substantial
amounts of explosive and harmful gases may accumulate in these.

Despite the great significance of the processes of active-impurity diffusion (gases, heat, moisture)
with respect to the various branches of engineering, the theory of these processes has not been adequately
developed. The present paper represents a study of the diffusion of a light gas in an air stream moving
through a rectangular channel; the gas is liberated throughout the entire surface of the upper wall.

Observations show that under the specified conditions we can neglect the diffusion in the direction
toward the side walls. The diffusion equation in this case will be

g % __9 {(e+D) 0‘3], 1)

0x  Ox, ox,

where the Ox,-axisisdirectedalong the stream, while the Ox,-axis is directed from the gas-release wall to-
ward the stream, in a direction perpendicular to that of the main flow.

The unique feature of Eq. (1) in the case under consideration is the fact that U and € are functions
of the gas concentration ¢ in the flow.

The function U (c) is valid only for stratified inclined flows for which it can be determined, in ap-
proximate terms, from the expression

U = U'— sign () U,. 2)
For a plane-parallel flow the Reynolds equation assumes the form
dv
=h +F,
P )
where
w2
dxy
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Fig. 1. Graphs showing the velocities U,, U', and U
(m/sec) for the case of methane liberation from the roof:
I and II) zones; ¢, %; x,, m.

Bearing in mind that F = 0 in a homogeneous flow and that

dU , P
T = (1 + pg) -dTZ’ h =a0UZw§,

after double integration for the boundary conditions x5 = 0, T = Ty = @ Uiy, U' = 0 from (3) we obtain

- H o PH,
U=ov* 22 (% —2 0, —x%, —26,], 4
H (1% h — %y S z) “4)
where
xy
A

The velocity ﬁc can be derived by integration of (3) for F ='g(pgy — p) sinp

- , Hg a dxs PH, %o dxs . H, 1 .
uxzv*mﬁl[ulzg b f oo +smﬁ%%£fféﬁq f(L—pﬂd@d@]- (5)

In (5) the primes denote that the corresponding quantities refer to those regions [zones] of the flow in which
the motion is proceeding in a single direction (with the free convection of the gas —air mixture in the air
duct and with the release of a light gas from the upper wall we find two zones in which the air is moving in
the same direction: at the upper wall the motion is upward and at the lower wall the motion is downward
1
. * I
et T H
Expression (2), in conjunction with (4) and (5), determines the values of U in the diffusion equation (1).
Caleculation of the velocity from these expressions for a given concentration profile and Ugy = 1 m/ sec and
for ay=20-10"* kg -sec’/m?* is given in Fig.: 1.

The turbulent diffusion of an active gas in an air stream alters the diffusion properties of the latter.

Let us examine the volume element © of the gas —air mixture (Fig. 2) which, as a result of pulsating
motion, is mixed from layer 1 of density p; to layer 2 with density py(p; > py). The volume £ is affected
by the specific ejection force Fg whose work over the length I —equal to the mixing length — is given by

2
g 88|00
2

6
or, cos P. (6)

A flow of a liquid moving at some velocity s may exert a resistance to the volume  that is identical
to the action of the ejection force. In this case

ps"

ae= =,

2
whence with consideration of (8), and if we also bear in mind that

au
Zrzul/—a—x B
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Fig. 2. Diagram for the calculation of the Fig. 3. Universal function & (x,)
ejection force. for a meandering shaft.
we find -
s = Ri'?, 7
where
£ '__@gi
Ri— o, cos B ®)

is the Richardson number.
As a result of the diffusion in the direction of the Ox,-axis we will develop a certain "diffusion veloci-
ty "
U= U, s ©)
As is well known, the coefficient of turbulent diffusion is equal to

e = —10 (10}

With the diffusion of passive impurities we have v = uy and ], = 1. We then have
e=1g, = —lu, (11)

The mixing length I, must be a function of the ejection force Fg, vanishing at some critical value of
Fo cr. Assuming a linear relationship, we can write

I, =14 bF,. (12)
For gas liberation from the roof with Fg = Fg o = 0 and from (12) we have
by Fe (13)
! Feor

Assuming Fgtobe proportional to Ri and bearing in mind that in the case of gas liberation from the
lower wall the second term in (13) will be positive, we have

"IO

= 1 4+ Ri¥, (14)

where Ri* = Ri/Rigyp.

Since €7 is the limit value for € in the event of diffusion of a passive impurity, it is natural to seek the
ratio
N (15)

as a function of the Ri number.
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Expressing z‘c}? and ZLT; in (10) and (11) in terms of the corresponding correlation coefficients T, and
r, and bearing in mind expressions (7), (9), and (14), from (15) we find that

Te 0512 s . .
0 =-"L Rlé’ﬁ (Ri**? & Ri* + Ri*V* 4 1).
r

When Ri = 0, w =1 and, consequently, ro/r = Ri] 1/2.
Assuming v,/r = Rlc;/z = const, we find
e =g, (Ri**” 4+ Ri* + Ri*"2 4 1). (16)
The quantity £ is determined in terms of the relative coefficient of turbulent exchange, ie., ’f= & /v¥H,

which for the given type of air conduit is a universal function of the coordinates. The graph of the function
s*(xz) obtained experimentally for the conditions of a meandering shaft, is shown in Fig. 3.

Expression (16) closes the system of relations needed for the solution of the problem of active-gas
diffusion in a ventilation stream:

0= |t 02,
dx; Oxz 0%,
U=U-sign® U,
&= g, .
We have the following boundary conditions: x, = 0, ¢ = ¢y, X; = Hc /8x, = 0.
The concentration cy can be determined from the following considerations.

The quantity of gas g emitted per unit of the gas-release surface per unit time moves only in the
direction of the Ox,-axis in the form of the convection flow cw Uy, (2 Stefan flow) and in a molecular dif-
fusion flow D(ac/axz)w, where Uy is the velocity with which the miixture moves in the direction of the Ox,-
axis, and the subscript w refers to the gas-release wall. Consequently, bearing in mind that q = Uy, we
have

U, =cU, —D(‘)C) : (18)
0%y /4
Using the Crocco integral [1, 2]
c=nlU-+m,
using the wall boundary conditions 8U/8x, = (9U/8x,)y and 97/8x, = (37/8x,)w when x, = 0, U = 0, and p = py
and using the conditions at the axis when x, = H,, U = Uy, and ¢ = ¢, we obtain
P C —
cC = ——COU w U + Cw,

0

().~ 2= (%)
0%,/ w U, 0%,/ w ‘

Bearing in mind the following relationships:

ou
PuD = g”c— B (672 ) = Tp = 0ylivi P = P (P2~ 0g) Cu

from (18) and (19) we obtain

cw=i2(l+p;+ﬂ)f—l/—i(1+P;+H)~(P;+Con)’ (20)

where
2
aanV . * Pa

L e .
ScUsg(pa—pPg) * Pa—0g

Mathematically the solution of system (17) is formulated as follows.
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Fig. 4. Graphs showing the solutions of the diffusion equa-~
tions (A = (p — p,) -10* kg sec’/m*, and x,, m): a) x; = 45
m; b) x; =300 m.

Fig. 5. Comparison of the theoretical solution with the ex-~
perimental data (the solid line denotes theory; p, N -sec?
/m*, and x,, mm).

We have to find the solution of equation

dp 0 ' dp
P _ % py 2, 21
0x, 0%y ® 0x, 1)

so as to satisfy the earlier-cited boundary conditions.

In this equation the value of the diffusion coefficient D'(p) at a given point is the function of the be-
havior of the p function over the entire interval of variation in x,.

If we replace the derivatives in Eq. (21) by differences, we obtain a different equation which relates the
values at the three points withthe numbersk — 1, k,andk + 1fora fixed value of x; which numerically is
solved by the pivot method in conjunction with iteration over p. The pivot method is effective for equations
such as (21) when the diffusion coefficient is a known function of x; and x,. The unique feature of this prob-
lem lies in the fact that D'(p) is a function of the unknown function p over the entire region of definition,
i.e., D'(p) is the operator applied to the function p.

In our case, to use the pivot method we must resort to iterations.
We will replace the derivative in the left-hand member of Eq. (21) by a difference. We obtain
pv-l—l — pn o apv-i-l

=-— D'(p")

22
T 0x, 0x, =2

Here p% is the value of the function p at the n-th layer at x;, while p¥ and p¥*! are the values of p obtained
from the p-th and (y + 1)-th iterations at the (n + 1)-th layer over x;.

Let p” be unknown. Then D'(pY) is a known function and, having solved Eq. (3) by the pivot method, we
find p¥*!. Assuming the value of p at the zeroth iteration to be equal to p?, we can thus find all of the values
of pV.

We will prove the convergence of the iterations, i.e., the existence of lim p¥ =p? ¥ ! in the assuming
that D' is a continuous operator satisfying the condition v

D’ (p)a=>0. (23)
The continuity condition can be written in the form
1D (0") — D" (p")] < Mofrp” — "] (24)

for any p'and p".
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As proof we will write an equation such as (22) for the p-th iteration:

Vv __
il U (v 0p¥ )
T ox, 0x,

(22"
and from this we will subtract Eq. (22) for the (v + 1)-th iteration. If we denote the difference p¥*! — pVhy
6p?Y T, the resulting equation is written as follows:

V-1 V-1 M
St _ 0 ©") _08p+! + 9 (D' (p¥) — D’ (0¥ )] o (25)
T 0x, 0%, 0%, 0x,

Let us now replace the derivatives in the right-hand member by differences and we will write the
resulting system of equations in matrix form. We obtain the following equation:

v
8™ LspvH 1 QID (%) — D' (o™ ). (26)

Here L and Q are matrices, while 6p¥ !, D'(p"), and D'(p¥ ~!) are vectors.

The coefficients of the matrix Q are functions of p¥, but because of the maximum principle which p¥
satisfies, the following inequality is valid:

i< M, 27)
where M is independent of p”.

The matrix Q is positive-definite. We can assume that 6p” ™! for all » satisfies the zero boundary
conditions. It then follows from condition (23) that

| L8+ | > &) 6p¥+]. (28)
Let us now find 6p”*! from Eq. (26):
SV = (E + L)1 1Q[D' (¥) — D' (p*)].
Here E is a unit matrix. )
From the positive definiteness of matrix L and from condition (28) we have the inequality

1
141

WE + =L)<

From inequality (27) and from condition (24) we obtain
|QID (v ) — D’ (p¥=h| < MoM | 8pY .
Hence for [ 5p7" 1|l we have

[8pv+ | < —"— [6p"|.
14 te

MM
As is well known, the interations will converge if
MM <1,

1+ 18
which can always be achieved through proper selection of T.
The problem was solved on a Ural-2 digital computer.

Figure 4 shows the graphs for the resulting solutions under natural conditions for Uy, = 0.15 m/ sec,
Ty=0.2m/sec,0y=17-10"4 kg -sec’/m?*, q = 1.6 -107* m®/sec -m?, while Fig. 5 shows the comparison of
this solution and the data from a laboratory experiment for the downward motion of the air (8 = 30°%, Uyy
=1.31 m/sec, Uy= 2.5 m/sec, qgug = 1.21 ‘107 m3/sec - m?, and oy = 29 -10~* kg -sec?/m*.

NOTATION

o, is the perimeter averaged friction factor;
Oy  is the friction factor of the wall;
B is the angle of inclination to the horizontal for the air duct;
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c is the concentration;

Cw is the concentration at the wall;

D is the coefficient of molecular diffusion;

£ is the coefficient of turbulent diffusion;

€1 is the coefficient of turbulent transfer for momentum;

F is the body force;

g is the acceleration of the force of gravity;

H is the height of the air duct; .

Hy is the distance between the wall of the air duct and the axis of the flow;

01, 09 are functions of £1 which are universal for the specified lateral cross section and the given rough-
ness of the channel;

My, Ny are the coefficients by means of which we take into consideration the effect of the side walls;

Io is the mixing length for concentration;

m,n are constants;

i is the absolute viscosity;

P is the perimeter of the lateral cross section of the air duct;

P is the pressure;

p is the density;

Pav is the average density of the flow at a given cross section; -

pa is the air density;

Py is the density of the liberated gas;

S is the cross-sectional area of the air duct;

Se is the Schmidt number;

T is the total shear stress in the flow;

Ty is the shear stress at the wall;

U is the averaged velocity in the direction of the main flow;

U is the averaged velocity for a flow of uniform density;

I—Ic is the averaged velocity of flow with free convection;

Ugy is the averaged flow velocity;

ug, Uy are the mean square pulsating velocities in the directions of the Ox;- and Ox,-axes;
is the "diffusion velocity."

<
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